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Anatomical imaging in clinical oncology practice traditionally has relied upon 
comparison of patient images following completion of therapeutic intervention with pre-
treatment images.  Therapeutic success is quantitatied in terms of gross changes in tumor size 
from the anatomical images 6-12 weeks following completion of treatment.  The hope is that 
new approaches such as “molecular imaging” could provide opportunities for obtaining 
additional insights into the effects of treatment which reflect tissue changes at the cellular or 
physiologic level.  Thus, the identification of a noninvasive imaging-based biomarker sensitive 
to early, therapeutic-induced changes in tumor tussue would provide for an early indicator of 
treatment response/outcome in individual patients.  This capability could yield tremendous 
changes in the clinical care of oncology patients as patients would be no longer have to be 
treated based soley upon statistical data of percent treatment response for a particular therapy as 
treatments could be modified prior to current anatomical endpoints thus allowing for 
individualization of care.   Furthermore, delineation of therapeutic-induced spatial heterogeneity 
within a tumor mass may also be used to provide additional information related to specific 
regions that are resistant or responsive to treatment.  This educational contribution will overview 
the use of diffusion MRI in pre-clinical and clinical oncology studies and will address how this 
approach may be applied in the future for the management of patients with solid tumors. 
 
INTRODUCTION 

Conventional oncologic MRI provides an invaluable opportunity to noninvasively follow 
gross tumor morphology and how it evolves following therapeutic intervention.  Conventional 
MRI exploits a variety of endogenous tissue properties that allow the neuro-oncologist/neuro-
radiologist to assess gross tumor extent on the resultant MRI contrasts, such as “T2-weighted” 
and “gadolium-enhanced T1-weighted”  images.  The typical radiologic assessment is somewhat 
interpretive and based on the spatial extent and location of anomalous contrast.  The actual 
image contrast values are rarely quantified as these are usually arbitrarily scaled and do not have 
a simple relationship to tissue properties. It is thought that there is significant untapped potential 
for MRI techniques designed to provide additional functional, structural, or molecular 
information related to tumor biology and physiology.  Such information may be derived from 
quantitation of tissue properties which reflect, for example, perfusion dynamics, oxygenation 
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levels, biochemistry/metabolism, cellularity and levels of gene expression.  Since the spatial 
information is retained, regional heterogeniety in these tissue properties and their change with 
therapy are also measurable.  

While tissue function, perfusion, oxygenation, and metabolism are actively being studied 
in relation to brain tumors, the specific interest in this overview is the application of MRI to 
provide information related to the microscopic cellular environment in solid tumors.  The use of 
water “apparent diffusion coefficient” (ADC) as a biomarker to probe tissue cellularity is 
compelling since this parameter is strongly affected by molecular viscosity and membrane 
permeability between intra- and extra-cellular compartments, active transport and flow, and 
directionality of tissue/cellular structures that impede water mobility.  Thus, diffusion MRI can 
be applied for a variety of tumor characterization purposes including distinguishing cystic 
regions from solid, highly cellular regions as well as detection of treatment response which is 
manifest as a change in cellularity within the tumor.  In brief, diffusion MRI sequences 
incorporate an additional pair of magnetic field gradient pulses to render an MR signal intensity 
that is dependent on the mobility of the signal source, i.e. water molecules1. Conceptually, the 
first of these two gradient pulses imparts a phase shift to each water molecule proportional to its 
initial location.  The second gradient pulse removes the phase shift if the water molecule remains 
at its original location.  Any molecular movement between first and second pulses, however, 
leads to incomplete rephasing.  The large number of water molecules and their respective 
random trajectories produce a net dephasing or signal loss.  The amount of signal loss is a direct 
reflection on water mobility - that is, the greater signal loss implies greater molecular mobility.  
If the time interval between gradient pulses is sufficient to allow water molecules to migrate 
distances comparable to the size of and spacing between cells, then the apparent mobility will be 
reduced by the impediments of cellular membranes and tortuosity of the extracelluar space.  In 
addition, the directionality of cellular structures such as in highly-ordered white matter fiber 
tracts can be probed by controlling the direction of the applied diffusion pulses.  The study of 
diffusion directionality or “anisotropy” is itself a significant area of investigation, however, 
tumor diffusion measures are typically directionally-independent via careful combination of data 
from several diffusion gradient directions2, 3. 

Often in clinical practice the raw “diffusion-weighted” image is utilized as a sensitive, 
albeit qualitative, diagnostic screen for acute ischemia in brain tissue4-6.  The clinical 
interpretation is that regions of conspicously bright signal on diffusion-weighted MR images 
suggests restricted diffusion in and amongst cells swollen by cytotoxic edema secondary to 
ischemic insult.  Acquisition of images at multiple diffusion sensitivities, however, allows the 
calculation of an apparent diffusion coefficient (ADC) at each point in the image. Water mobility 
is reduced in the restricted environment of cellular-dense tissues relative cellular-sparse tissues 
that exhibit high diffusion properties. While it is an over simplification of the biophysics 
involved, we will consider the ADC value to be inversely related to the cellularity of brain 
tumors.  The relative tissue contrast on an ADC image shows high diffusion/mobility areas as 
bright in acellular/cystic tissues is actually reversed from the contrast of diffusion-weighted 
MRI.  While this can be a source of confusion, the key feature of the ADC representation is that 
it is quantitative.  As such, ADC may be used for the diagnostic assessment of tumors, for 
comparison across individuals, or serially within an individual undergoing treatment and is 
independent of the equipment brand and magnet field strength. 

The central hypothesis in utilization of diffusion to assess the impact of therapy is that 
successful treatment of a tumor with cytotoxic agents results in significant damage and/or killing 
of cells thus altering cell membrane integrity and the degree of cellularity prior to tumor volume 
regression.  This has a net effect of increasing the fractional volume of the interstitial space due 
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to cell loss resulting in an increase in the mobility (diffusion) of water within the damaged tumor 
tissue.  The sensitivity of diffusion MRI for detection of therapeutic-induced changes depends 
upon the possible overall dynamic range which can be observed by ADC measurements.  For 
example, tissue such as normal adult brain has an ADC value of 0.6-0.8 x 10-3mm2/sec while 
CSF is about 3.0 x 10-3mm2/sec.  This represents the range of ADC values typically observed in 
the CNS.  Enthusiasm for the use of diffusion MRI for therapy assessment stems from animal 
studies which have reported that this approach can be used to monitor early events in tumor 
treatment in a variety of tumors models 7-11 along with application to patients with primary CNS 
tumors20-22. 

 
Potential Clinical Impact 

Presently, a comparison of sequential MRI scans is the method of choice for monitoring 
the response of CNS tumors to therapy which compares the change in maximal diameter, cross 
sectional area of the tumor via the product of the maximal perpendicular tumor diameters, or full 
volume determination12.  Gadolinium-enhanced T1-weighted images are often used, but T2-
weighted or other MR contrast strategies may be employed.  Comparisons of tumor burden are 
usually made between pre-treatment scans and those obtained weeks to months following the 
conclusion of a therapeutic protocol13.  Methods of assessing treatment response that are not 
dependent on relatively slow changes in tumor volume may be capable of providing earlier 
indications of therapeutic outcome since molecular and cellular changes typically precede 
observable macroscopic changes in gross tumor size.  Therefore, the use of a quantitative MRI 
bio-marker scheme (i.e. water diffusion) to determine therapeutic-induced changes in the tumor 
cellular matrix as recently reported is an area of active research investigation.  

 
Cellular Density 

Diffusion-weighted MRI (DWI) has proven to be a sensitive technique for identifying 
regions of ischemic tissue damage in animal models of stroke and in human patients 4-6. Monte 
Carlo simulations suggest that changes in tissue water diffusion following tissue damage are 
predominantly attributable to alterations in the volume and tortuosity of the extracellular space 
14-16.  These properties of the extracellular space are primarily a function of cell density, and 
recent work has shown that tumor water diffusion is associated with tumor cellularity17-19.  
Comparison of ADC values from individual tumors with biopsy-derived histological sections 
provides important validation of this approach for noninvasively assessing cellularity of tumor 
tissue.  This ability can be exploited in the clinical setting where classification of a CNS lesion 
as a cyst or a tumor may be difficult based only upon the information obtained from anatomical 
images.  In these examples, an arachnoid cyst and epidermoid tumor both presented as 
hyperintense lesions on T2-weighted MRI in two different patients.  However, diffusion MRI 
revealed the cyst as a lesion with an extremely high ADC value (3.0 x 10-3 mm2/s) while the 
tumor had a low ADC value (0.9 x 10-3 mm2/s).  These examples reveal that diffusion MRI can 
provide valuable information reflecting the cellularity of a lesion within the CNS which can aid 
in clinical diagnosis. 

 
Treatment Assessment 

The temporal gradation of increasing diffusion values from pre-treatment viable tumor to 
treatment-induced acellular tumors was first reported using a rat glioma model7.  Since this 
initial report, there have appeared numerous studies verifying and expanding upon the ability of 
diffusion MRI for following treatment response8-11.  Evaluation of the clinical potential of 
diffusion MRI for detection of early therapeutic-induced changes in tissue structure are ongoing 
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but recent results have been very promising20-22.  In these recent studies diffusion MRI has been 
used to provide early evidence of cancer treatment efficacy in individual patients prior to the 
completion of the therapeutic regimen21,22. 

 
Tumor Hetergeneity 

Tumors are known to be highly heterogeneous in terms of cell viability, perfusion and 
oxygenation level.  Since these biophysical properties are factors that can modulate efficacy of 
chemo and radio therapies, one could reasonable expect that therapy-induced changes may 
heterogeneous within a given tumor.  Since ADC images are quantitative they can be used to 
regionally map therapy response.  Such information has the potential to be valuable to guide 
spatially-directed therapies such as gamma knife radiosurgery or intra-tumoral injection of 
agents.  Since tissue “change” is of key interest, temporal shifts in diffusion coefficients are 
measurable by select region-of-interests defined on ADC images.  Alternatively, an “ADC 
difference” map provides an efficient means to survey regional tissue alterations.  

The histogram-based analysis of tumor diffusion data sets provides the opportunity to 
quantify mean tumor ADC values.  However, alternative methods of analyzing diffusion data are 
required for analysis of clinical data which have large regions of spatially-varying heterogeneity 
in ADC values.  A recent approch termed functional diffusion mapping (fDM) appears very 
promising wherein ADC maps are acquired pre-treatment and early on during treatment with 
chemo- and/or radio-therapy21,22.  Images are digitally co-registered to the pretreatment scan, and 
tumor diffusion values calculated and correlated with subsequent response defined by change in 
tumor size on MRI by standard radiographic criteria.  Results obtained using fDM have revealed 
early changes in tumor diffusion values occur which could be used to predict patient response 
with high sensitivity and specificity21,22.  Thus, diffusion MRI appears to provide an early 
biomarker for predicting treatment response in patients with brain tumors and should be 
considered a very important avenue for future research investigations. 
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